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ODYSSEY

Dennis Braddy, Stewart Brown, Grant Cook,
Chris Kueny, Mike Lambert, Doug Peters
Lawrence Livermore National Laboratory

We present results obtained with the Odyssey simulation code. Odyssey is a 1, 2, and 3 dim
sional AMR code using cartesian, cylindrical, and spherical coordinates. The results provid
interesting snapshot of Odyssey at this point in its development. Results include parallel pe
mance and scaling, Eulerian hydrodynamics algorithm comparisons, ADI based diffusion so
on hierarchical meshes, ECB treatment of material interfaces in diffusion solves.

Keywords: AMR, hydrodynamics, Godunov, CE/SE, ADI, diffusion, hierarchical mesh, p
allel

Introduction

Odyssey is an AMR code whose object is to study issues relating to AMR and to Euleri
hydrodynamics. Our mission is to evaluate these technologies in comparison to others suc
ALE or free Lagrange. The immediate goal is to develop a base set of capabilities which ar
robust and well understood. These will next be applied to carefully selected simulations wh
will help us to understand the long term benefits of these technologies relative to competing
which are at a more mature state of development and use.

The principle physics to include is hydrodynamics and radiation diffusion. These two toge
let us explore explicit methods which require only local interactions between cells and impl
methods in which all cells of a simulation interact through a global matrix solve.

In order to assess the hydrodynamics as distinct from the adaption strategy we have tw
hydrodynamics packages. One uses a directionally split, piece-wise linear Godunov MUSC
solver and the other uses the conservation element/solution element (CE/SE) method of C
and is not directionally split.

For the diffusion solver we use the ADI method adapted to a hierarchy of grids. The AD
method is computationally robust and some recent work in the literature suggests good pa
scaling properties for large numbers of processors. To improve the treatment of diffusion co
cients in cells with more than one material we use the embedded curved boundary (ECB) m
and exploit the material interface which was reconstructed in the hydrodynamics phase.
1
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Eulerian Hydrodynamics
In the course of evaluating Eulerian hydrodynamics we have identified issues which are

important to the quality of solution obtained. Issues which we discuss here are: approximatio
Riemann solvers; pure characteristic solutions; and directional splitting schemes. Our God
solver is directionally split so that we only have to solve “1d hydrodynamics” problems. The
SE method is unsplit. In comparing the two we noted many differences in addition to the sim
ties. Since both packages run in the same code we can be sure that the initial value proble
the same. Also ancillary information such as the equation of state information is the same f
both. So when we look at differences we are really peering directly into the algorithms of the
packages.

In our study of the two packages we became aware of the factors which contribute to th
ferences in the answers that we were seeing. We discuss first the problem of the approxima
mann solver. Next we look at the directional splitting. As this is work in progress we have n
definitive conclusion as yet.

Godunov Package
Many Godunov based hydrodynamics schemes use approximate Riemann solvers to im

the performance of their packages. The approximate solvers fall into various categories, for
ple those based on Roe’s method. Odyssey had an approximate solver as described by Co
Glaz, van Leer, and others [1-3]. The approximate elements of the Riemann solver are:

1. No iterations (or few) to solve for the contact pressure and velocity.

2. Linear interpolation through the rarefaction fan

3. Low order Taylor expansion to find the perturbed state density

For hydrodynamic flows in which there are jumps in field quantities exceeding an order 
magnitude these approximations result in observable deterioration of the solution. Most of 
Riemann problems solved in the coarse of a simulation involve small jumps where these ap
mations are valid. However, a certain number of cells will encompass jumps for which they
bad. The result is incorrect propagation speeds of shocks and contacts and a lack of fidelity
ious flow features.

We replaced the original Riemann solver with a solver which can be run with the above
approximations in arbitrary combinations. We verified the exact solver against published sh
tube solutions, then proceeded to run a very strong shock tube problem with each of these a
imations in all combinations. The idea is to understand the consequences of the approxima
individually and collectively.

We then performed a set of eight simulations on a Mach 80 shock tube using all the com
tions of the above listed approximations. We also ran a series of eight on a Mach 1.7 shock
In the weak shock tube, the contact discontinuity and the shock front separate by more tha
cell in two cycles. By contrast, for the strong shock tube the contact and shock remain less t
cell apart for more than thirty cycles. This is why such problems are difficult for Eulerian hy
dynamics schemes.
2
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In Fig. 1, 2, and 3 we plot the log of density, log of pressure, and velocity for each of the M
80 simulations along with the analytic solution. The curves corresponding to approximation
which don’t get the shock speed right are shown in blue. The remaining approximations giv
results which are more difficult to distinguish as right or wrong. They are shown in red. The s
set of simulations with a Mach 1.7 shock tube showed no significant differences among the
ous approximations.

Figure 1. Log of density vs. position Figure 2. Log of pressure vs. position

Figure 3. Velocity vs. position Figure 4. Rate vs. approximation

We also plot the normalized run time against the sequence of approximations to illustra
relatively low cost to be paid to use an exact Riemann solver. Fig. 4 shows the results. The f
run was only 7% faster than the slowest. In our implementation the Riemann solves take a
half of the hydro time. The other half split between the characteristic tracing and the state up
Also for the Mach 1.7 shock tube there were an average of 1.01 iterations per solve with a 
3
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mum of 6 and in the Mach 80 shock tube there were an average of 1.15 iterations per solve
maximum of 12. These facts account for the relatively low expense of doing exact Riemann
solves.

To help visualize the differences in the approximations we had Odyssey edit the contac
sure (Pc) and velocity (Uc), as well as the density, pressure, and velocity at the cell bounda
the half time step for each Riemann problem solves. In Fig. 5 we show a scatter plot of the
edge density versus the 2d domain Pc x Uc. The points fall on definite tracks. We plotted d
from three of the runs above. What we see is that all approximations agree at the high and lo
of the scale for Pc and at the low end of the scale for Uc. So restricting the domain to large
exclude these regions we see the big differences in the remaining data. Each data set is pl
with a different palette consisting of shades of red, green, or blue. The darker color is farther
and the lighter color is closer along the view line of sight. Density (labelled Z) is the height ab
the Pc-Uc plane (labelled as X and Y respectively).

Figure 5. Density vs. Pc-Uc for three approximations
4
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Characteristic Solutions
A shock-capturing technique such as Godunov hydrodynamics based upon a full solutio

the Riemann problem at each cell edge at each time step is necessary for flows which con
strong discontinuities. In that standard technique, upwind characteristic tracing is done to e
edge, j, of each cell to obtain field quantities at time n+1/2 from the cell values at time n. Th
values form the initial conditions for a Riemann problem to be solved, usually approximatel
each edge j. The edge values of the field quantities thus obtained determine the fluxes used
the advection step. For regions of sufficiently smooth flow, however, it is not necessary to s
the full Riemann problem.

We outline a method here which takes a more direct route to obtaining the half-time valu
the advected edge quantities. Although this method is applicable in any number of dimensi
we discuss the two dimensional formulation for concreteness. A direct solution to the two-di
sional quasi-linear Euler equations

(1)

where

is possible. Here,ρ is the density, u and v are the x and y velocities, respectively, P is the press
E is the internal energy, c is the speed of sound and H is the enthalpy. The values at edge 
time n+1/2 are obtained by expanding about the values at time n:

(2)

This allows us to use characteristic solutions to directly calculate the values of the adve
field quantities.
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We tested this algorithm on the Mach 80 shock, with the results shown in Figs. 6-8. The
lytic solution is the black dotted line, and the code result is in red. In this 90 cell problem, the
mann solution has been used for a region of four cells at the contact discontinuity and a reg
five cells at the shock. The characteristic solution has been used for the remainder of the c
These results are comparable with those obtained by using the full Riemann solution over 
entire domain (see Figs 1-3), and show that the algorithm is stable.

Figure 6. Log of density vs. position Figure 7. Log of pressure vs. position

Figure 8. Velocity vs. position
6
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CE/SE Package
There are two approaches to obtaining genuinely unsplit shock-capturing hydrodynamic

algorithms which hold sufficient promise. The first is the Conservation Element and Solution
ment (CE/SE) Method (Chang, 1995). The second approach is the Riemann Invariant Man
(RIM) technique (Papalexandris, et. al, 1997). We will not be concerned any further here wit
RIM approach.

Beside a completely unsplit approach to solving conservation laws, the CE/SE method 
features a superior dissipation treatment that adds dissipation in a conservative fashion. Mor
this method allows the amount of dissipation to be reduced significantly, while still avoiding r
ing in the solution at the shock front.

We summarize here some of the results of a comparison between the directionally-split
Godunov solver and the unsplit CE/SE solver. The example shown here employs a large a
of dissipation. For lower amounts of dissipation, and a more complete discussion of these 
see Cook (1998) in these proceedings.

A problem that we examined was a 2d cartesian concentric, inward flow followed by a bo
and subsequent outward expansion. We would expect the CE/SE method to do a better job
maintaining symmetry because it transports the spatial derivatives of the state variables, he
representation of the flow has knowledge of the curvature of the flow field which the direction
split solve lacks.

In the following two figures we see contour plots of the density for the two simulations. F
9 and 10 each contain a set of contours from the inward flow phase and one from the outwar
phase.

Figure 9. CE/SE result dotted red in/blue out Figure 10. Godunov result dotted red in/blue out

Note the symmetry of the CE/SE result and the corresponding lack of symmetry in the
Godunov result near the origin.
7
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Diffusion
At present, an ADI discretization is the primary approach to flux-limited diffusion calcula

tions in Odyssey. ADI is a second-order accurate discretization in time. In space, the Odyss
cretization is second-order accurate away from coarse-fine boundaries and first-order accu
adjacent to coarse-fine boundaries. Below are shown single-level multipatch calculations (Fi
- 13) and one two-level calculation (Fig. 14). Boundary conditions for Figs. 11 and 12: Neum
top and bottom, Dirichlet left and right. Boundary conditions for Figs. 13 and 14: Neumann o
four sides.

Figure 11. Single level multi-patch early timeFigure 12. Near steady state

Figure 13. Diffusion with point source Figure 14. Point source with refinement

Patch boundaries are delineated by gray lines. The diffused unknown is processed in e
patch independently of other patches, to the extent possible. This facilitates parallel implem
tion of the algorithm, for which near-optimalNlogN scalability has been empirically demon-
8
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strated for the steady state solution (Lambert et al 1997). In the two-level case, the upper r
gray box encloses a region refined by a factor of two in each direction. Isotropy of point sou
diffusion is observed, and in all cases the calculation is relatively seamless across patch bo
aries. Such behavior of an ADI discretization on a locally refined grid was just recently broug
our attention (Lambert 1998). ADI has been implemented in 1, 2, and 3 dimensional cartes
cylindrical, and spherical coordinates. While the point source calculation with refinement (F
14) is based on an inefficient proof-of-principle implementation, fully parallel multilevel ADI-
based diffusion calculations are close at hand.

In Fig. 15 we show a simulation in two-dimensional spherical coordinates. The region bey
a fixed distance from the polar axis is given a low conductivity. Inside that low conductivity reg
is another of much higher conductivity, forming a conductive pipe. A cylindrical disk of high
temperature is then placed inside the pipe, and the simulation proceeds. Notice the planar 
of the diffusion front, not aligned with any coordinate surfaces, even after passing through th
gin. Neumann boundary conditions are enforced at maximum radius.

Figure 15. Diffusion from cylindrical slab into a pipe.
Simulation done in spherical coordinates.
9



NECDC  October 1998

ion
uccess-
sily
ound-
e then
 Fig.
oints
ndi-
r-

ork of
B-
tions.
itions
y and

ity is
ror in
tions
an 32
. For
s to

 com-
ECB Treatment of Material Interfaces in Diffusion
We are currently incorporating a new model for material interfaces into Odyssey’s diffus

solver. This method, known as Embedded Curved Boundaries (ECB), has been used very s
fully for the solution of elliptic systems (Hewett, 1997) using Dynamic ADI, and translates ea
to the parabolic systems of diffusion. The method consists of translating arbitrarily shaped b
aries into a set of Piecewise Linear Boundaries (PLBs). Boundary values on these PLBs ar
easily incorporated into the finite difference equations for the Laplace or diffusion operator.
16 shows a circular boundary (in black) along with its PLB representation (in red), and the p
that enter into the finite differences. A traditional stairstep model for a Dirichlet boundary co
tion would simply use the boundary value  in place of the quantity  in the finite diffe
ence operator at the point. ECB instead uses the value along with the known distance
to write a new second-order-accurate finite difference operator. This is a simple idea; the w
course is in building machinery to efficiently and accurately translate the interfaces into EC
style PLBs. This has reached a state of considerable maturity for the solution of elliptic equa
Dirichlet and Neumann boundaries have been treated, as well as diffusivity boundary cond
between materials (Hewett and Kueny, 1998) and extension to locally refined meshes (Kuen
Hewett, 1998).

Figure 16. Piecewise linear representation of curved boundary

A comparison of stairstep and ECB boundaries for Laplace’s equation in a cylindrical cav
shown in Figs. 17 and 18. Both were solved on a 20 x 20 grid in cartesian coordinates; the er
the solution for the stairstep model was 34 times larger than for ECB. The difference in solu
is most obvious near the inner boundary surface. The stairstep model required a grid more th
times finer in each direction in order to match the accuracy of the ECB solution shown here
elliptic equations there is very little runtime penalty for this. In fact, ECB in many cases seem
result in faster convergence, possibly due to less spurious fine structure to contend with as
pared to the stairstep boundary model.

ϕB ϕi 1–
ϕi ϕB f∆x
10
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Figure 17. Stair step computation Figure 18. ECB computation

The first test case for ECB in Odyssey’s diffusion package is a configuration of constan
perature sources identical to that of Figs. 17 and 18, whose steady state temperature distri
will be the same as the solution seen there. The PLBs for this case are provided by the ma
interfaces reconstructed from the volume fractions after the hydrodynamics solve. Each ce
an interface through it contains a vertex as part of the reconstructed material interface; the
are simply taken to be the lines connecting these vertices (Fig. 19). At points where these 
pass directly between cell centers, the finite differences for the diffusion equation are adjus
take account of the interface.

Figure19. Construction of PLB (red) from material interfaces (black)
11



NECDC  October 1998

lemen-
f one
t a sin-
al
ach is
ion.
hbors.
its own

uted
he sub-
. The
l map
le, or
d in
orta-
d is

list of
this

’s.
he
hows
terface
 of
e hor-
te pro-

ed
’s,
xis
 slice

t least
axi-

ed
show
Parallel Implementation and Performance
In Odyssey we have two approaches to parallelism. These were dictated by ease of imp

tation in order to meet milestones for the code. The outcome is that we see clear benefits o
over the other. The first approach is to use threads (SMP parallelism) to process all grids a
gle level in parallel. Amdahl’s Law instructs us that there will be a significant amount of seri
work accompanying the parallel work in this approach. The second, complementary, appro
to divide the physical problem domain into local domains for each node used in the simulat
Each node then runs its own hierarchy and communicates boundary information to its neig
There is almost no serial work here and each node is free to use threads to process grids in
hierarchy. This lets Odyssey combine both SMP and distributed parallelism (MPI).

The one and two dimensional graphics in Odyssey is also done in parallel. In the distrib
mode each node communicates its domain size to a specified node which then computes t
region of a pixel map. Each node then renders its data into a pixel map of its assigned size
pixel maps are then sent to the specified node where they are assembled into a single pixe
then dumped out to the desired medium (screen window, PostScript file, JPEG file, CGM fi
MPEG file). Each plot request is assigned to a different node to spread out the work involve
assembling the pixel map and writing it out. This machinery was incorporated into PACT (P
ble Application Toolkit) which is a set of tools used to facilitate portable simulation codes an
available via anonymous ftp at west.llnl.gov.

In the SMP mode, each grid’s data is used to compute the desired edit data for its part. A
mappings is thus made and is then serially rendered then sent to the output device. Again 
strategy allows both distributed and SMP parallelism to coexist and cooperate.

Fig. 20 is a plot of the speed-up for a given number of CPU’s versus the number of CPU
The speed-up for n CPU’s is the time required to run the problem with one cpu divided by t
time required with n CPU’s. The maximum possible speed-up with n CPU’s is n. Curve A s
this theoretical maximum. Curve B shows the results measured using a Message Passing In
(MPI) only (no pthreads) version of Odyssey to run a 3-D shock tube problem. The number
CPU’s varies logarithmically from 1 to 512, thus the ten data points are equally spaced on th
izontal log scale. The code was run on an IBM SP2 using all CPU’s on each node as separa
cesses.

Fig. 20 shows that Odyssey achieves excellent distributed parallel scaling. The measur
speed-up is quite close to the theoretical maximum until near the maximum number of CPU
here communication costs are greatest. Imagine slicing a hotdog perpendicular to its long a
into 512 pieces. Each of those slices corresponds to a subdomain in the problem and each
must communicate with its neighbors. The communication overhead therefore increases a
as fast as the number of slices. The zoning for the problem was chosen so that 512 is the m
mum number of subdomains possible and therefore the communication costs are maximiz
there. By adjusting the zoning, it is possible to avoid the region of maximum overhead and 
speed-ups within a few percent of the theoretical maximum.
12
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Figure 20. Speed-Up vs. # CPU’s Figure 21. Wall Clock Time x # CPU’s vs. #CPU’s

Fig. 21 shows the time required to run another 3-D shock tube problem times the numb
CPU’s used (n) versus n for four different cases of code configuration and pattern of cpu use
was collected for n = 4, 8, 16, 32, and 64. Curve A data were collected using an MPI only (
pthreads) version of Odyssey. Data represented by curves B, C, and D were collected usin
MPI and pthread configured version of the code. The problem was run on an IBM SP2 hav
four CPU’s per node. For curve B all four CPU’s on each node were used as separate proc
For curve C only one cpu per node was used. (Three were wasted.) In curve D one proces
four threads was used on each node.

Because the wall clock times were multiplied by n, horizontal lines would indicate speed
proportional to n. As you can see all four curves are very nearly horizontal, again indicating e
lent scaling. Note that when threads were used (curve D) performance was significantly deg
relative to other cases -- run times increased by about one third. The other three cases pro
results quite similar to one another. This means that a single version of Odyssey configure
support both MPI and pthreads can be used without significant lost of performance (as long
threads aren’t actually used). It also means that there is no great incentive to waste CPU’s 
A). This is a most welcome result since we all want to be good citizens!

Fig. 22 shows speed-up versus number of threads where the number of CPU’s is fixed 
(curve A), 4 (curve B), and 2 (curve C). For example, curve A has data points for 8 processes
1 thread each, 4 processes with 2 threads each, 2 processes with 4 threads each, and 1 p
with 8 threads. Once again the results are for a 3-D shock tube problem. The problem was r
a DEC Alpha host with 8 CPU’s.

Basically, Fig. 22 demonstrates that for the current Odyssey it is always better, perform
wise, to use more processes and fewer threads for a given number of CPU’s. The results u
threads are even worse on the DEC Alpha than on the IBM SP2. Although the speed-ups inc
with the number of CPU’s, increasing the number of threads beyond about 4 gives very littl
increase in speed-up. (Compare the speed-ups for the rightmost point on each curve.)
13
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Figure 22. Speed-Up vs. # Threads

Odyssey’s distributed parallel performance and scaling are excellent. Where communic
overhead noticeably affects performance, we have demonstrated that the costs are indepen
message length and thus latency dominates communication costs in Odyssey on the IBM S
(This was accomplished by increasing the message buffer size and noting that performanc
unaffected.) The latency is likely to decrease on future IBM systems due to both hardware 
software improvements.

The fact that using pthreads (shared memory parallel) gives much worse performance t
using all MPI tasks (distributed parallel) is not surprising. Dividing the problem domain into 
domains and running each subdomain on its own cpu means that almost 100% of the code
allelized. But in the shared memory case only a fraction of the source code lies within threa
regions. Most of the cycles are expended in these threaded regions, but Amdahl’s Law nev
less takes its toll. At some point we may extend the threaded regions and improve SMP pe
mance. This would represent a considerable effort with no guarantee of performance signific
exceeding the current MPI only results.

Currently Odyssey allows for creating subdomains by specifying the axis to be sliced and
many slices. Future plans include generalizing this process to support slicing all or any com
tion of coordinate axes. This will allow a larger number of subdomains to be created and th
greater number of CPU’s to work on a given problem.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
14
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